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ABSTRACT

Given the invariant density or ergodic distribution, we can find some

dynamical map f(.) such that x| = f(x ) for which the collection {x } of prime

1
gaps follow the stationary distribution referred to as the Inverse Frobenius-Perron
map. We provide an alternative theory for finding such a formula based on

chaotic dynamics.
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INTRODUCTION

A dynamical system {X,} generated byamap (.):
Xr+1 = w (Xr) ks 0,1,2,...N ':1}

is chaotic if the values {X } behave like a random sequence. Devaney (2000)
provides a more rigorous definition of chaos which essentially boils down to: (a.)
sensitivity to initial conditions, (b.) topological transitivity, and (c.) countably
infinite periodic points of all periods. By treating (1) as a pseudo-random
sequence for large /V, one obtains a probability distribution F{(.), assumed
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absolutely continuous with respect to a Lebesgue measure, that describes the
random behavior of the sequence. The invariant distribution F(.) is the fixed
point of a Frobenius-Perron operator L(.) (Pingel, 1989):

p11+l(x) — sz(p'n(x))
where p,, (x) is the density at the nth iterate. In the case of the logistic map:

Xenn =Y X)) =4X,(1-X,), t=012,..N (2)

The Frobenius-Perron invariant distribution is analytically derived as:

Flx) = 2O - gcy <t (3)
)= ——— (4)
= .y x(1-x)

In many practical situations, the invariant distribution F(.) is known and the problem is
to find the chaotic map /(.) that generated the values. This is the inverse Frobenius-Perron
problem (Diakonos, 1997; Nijun-Wei , 2013). Nijun-Wei (2013), Pingel (1989) and others have
enumerated four different approaches to the problem: (a.) method of conjugation, (b.)
differential equation approach, (c.) Pingel’s approach and (d.) matrix approach. In this Chapter,
we introduce an approach that is based on the dynamics of a known chaotic map ¥ (.) and a
known invariant distribution F(.) to construct an unknown chaotic map 8(.) whose invariant
distribution H(.) is known.

The approach uses the inverse transform theorem which states that if F(x) is

the distribution of a random variable X then:

U=F(x)d U(0,1)

is uniformly distributed on (0,1). Hence, if H()’) is the distribution of another random variable

Y, then
U=F(x)=H(yv) g U(0,1) (5)

Equation (5.5) then allows us to connect the dynamics of Y with the dynamics of X. That

H(Y, )= F(X,) = Uh(i U(0,1) foreacht (6)

and so,

Y, = H'(F(X,) (7)
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Chaotic Maps Derived by Conjugation of an Auxillary Map

let I ={x:x €[0,1]}and Y : I — I be given by Equation (2). Let ] = {yv: v € (0, c0)}
and &: ] — | be an unknown chaotic map:

Yoo = B(Yt)

The invariant distribution of (2) is given by Equation (3) while the invariant
distribution of {¥’ } is a known distribution /(y).

Theorem 1: Let 1 : I — [ be a chaotic map with invariant distribution F(.) and let
8:] — | be another chaotic map with invariant distribution H(.). Then:

B:(F_'L*H)_lztg{):« (F_l « H)
Note thatif G=F 1+ H , then:0= G 1% 1 =G.

Proof. From (6) and (7):

Y, = HY(F(Xp) = HY(FW(X,-y)) = H(FP(F(U,-y))
= (FOP(F*(H(Y,-y)) m

By Theorem 1, 8(.) is obtained by conjugation of Y(.). The map 8(.) inherits the
dynamical characteristics of (. ). This is not the same as the conjugation approach of Nijun-Wei
(2015) who derived 8(.) independently of (. ).

Let H(.) be the exponential distribution:

Hy)=1-exp(—4y) , A>=0,y>0 (8)

1

e (V) for large N. Equation (8) arises as an approximation to the distribution of

prime gaps:

where 4 ~

Y, = Py, — P,,n=123,..N

where P~ and P are consecutive primes (Cramer, 1936; Selberg, 1948;
Yamasaki and Yamasaki, 1991). On the dynamics of prime gaps (Libao 2016
dissertation), we established that the gaps {Y } form a chaotic sequence with a

periodic point of period 3. Li and Yorke (1975) demonstrated that if a system has
a period 3 point, then the system is chaotic.

116



International Peer Reviewed Journal

From (5) and (8), we have:
TR 1 — exp (—2¥)
Hence,
Vi = %ln (1- %arcsin V’m)
However,
Xeeq = sin?G (1= exp(=2%y)).
let ;4 = g (1 — exp(—AY¥;_1)), then:
Vi = :T'lln (1— %arcsin v’m) (9)
Y= =In(1-2¢, ;)

Equation (9) further simplifies to:

Y, = _Tlln [—1 + 2exp (—AY,_,)|
Hence,
6(y) = <In| —1 + 2exp(—2y)| .

Theorem 2. Let 1y (x) = 4x(1 — x) with invariant distribution:

1
x)= —,0<x<1
f&) T x(1 —x)

and let 8(y) be the dynamical map for the prime gaps with invariant distribution:

1
log (N)’

h(y) = dexp(—4y), Ar
then,

-1
a(y) = Tln| —1 + 2exp(—Ay)| .
The dynamical map @ mimics the random pattern generated by the logistic map. In fact:

Corollary 1. The fixed points X, = 0 and X, = 3 of the logistic map are mapped onto
In(3)

A

the fixed points Yy = 0and Y, = of the map 6.

117



Liceo Journal of Higher Education Research

Proof. We show that the points Yy = 0 and Y =m—f} are fixed points of 6. For

¥y = 0, we have:
6(0) = = In (=1 + 2exp(-4(0)) = =In (-1 +2(1)) = 5 (0) = 0.
For the second point, we note that —1 + 2exp(—A4y) < 0,, hence:
=il
7 In[= (=1 +2exp(=A))] =¥

It follows that:
1 —2exp(—Ay) = exp (—4y)

1
exp(—4y) = 3

- n®
o (lnf)) _ lnf]

Figure 1 shows the plot of 8(y) against y for N = 100,000,000.

se%s e

theta(y)

0 50 100 150
sort(y)

Figure 1. Theta () versus y.

Figure 2 shows the phase diagram of Y(s+1) versus Y(#) using the initial
condition Y, = .00.
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Figure 2. Phase diagram of Y(#+1) versus Y(2).

On the other hand, we also viewed the phase diagram for E(Y |Y =y) versus
Y=y for the actual prime gaps up to gap = 18 as shown in Figure 3:

Mean

gap(t)

Figure 3. Phase diagram of E(Y#+1|Y?) and Yz

We verify that the pseudo-random numbers generated by 8(Y;_;) follow an exponential
distribution. This is contained in Theorem 3.

Theorem 3. Let X;,; = 4X,(1 — X;) with ergodic distribution Beta G,B Then:

1 2arcsin(yx;
Yy = — 2|1 - 2ereint)
A 3

has an exponential distribution with rate parameter A.
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Proof: For each t,

F(x,) = z[mmﬂw =u; =1—e M whereu, d U(01).

The result follows. |
Theorem 3 suggests the following algorithm:
Algorithm:
1. Choose an initial value X, € [0, 1] away from a fixed point of the logistic map;
2. Compute X;4; = 4X;(1-X;), t=0,1,2, ., n;

2 a.rcsin(\fx—g}

3. Compute YtZ—%ln 1 = |, t=012,..,n;

4. ReturnY;

The specific prime gaps sequence {2, 2, 4, 2, 4, 2, 4, 6, ...} is just one of the infinitely many
possible paths that {Y;} can take. Note, however, that X; = Y(X;_,) and given step 3 of the
algorithm, the behavior of {¥;} is completely determined by the behavior of ¥(.). Likewise, given
the dynamical character of {X;}, the initial value X, completely specifies the trajectory of the
system.

Theoretical Bound for the Mean Absolute Error

Consider:
1
= ?:u |(Yt - Yt’)|

representing the average divergence of the two trajectories of the chaotic paths
{Y } and {Y, }. The Lyapunov characteristic exponent of a dynamical system
is a quantity that characterizes the rate of separation of infinitesimally close
trajectories (Bryant ez al., 1990). Two trajectories diverge at a rate given by:

d(y) = exp(5(3)) 1d (o)l = k exp(8(»))

where d(y,) is the initial separation of the trajectories. The quantity §(y) is the Lyapunov
exponent. This is given by:

T
5() = lim~ > (16" G
n—oo Jl
n=0
Since the invariant distribution of {¥;} is known, we can compute:

8(y) = [, Inle’(y)| dH(y)
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It is easy to see that:

00) = oy
And
8"l = — R for large y
exp(4y) — 2
Hence,

§() = [ nle' () dH() =In(@) — [ du, u = exp (Ay)

u

The integral on the right converges to

“Inju — 2|

5(y):f In|0’ ()| dH(y):ln(Z)—J T M

N m—_]_ =2} 1
~ 111(2) - [f3 2u du + f3 2(u-2) du]

1 pool 1 oo du
= In(2) + Efa ~du— Efa ey

~In(@)+ S In (G557 =In(2) - In(3)

when the singularity at u = 2 is avoided. In this case, the Lyapunov exponent is roughly
§ = 0.143841. Consequently,

i o [(Y: = Y| ~kexp(8) log(n) = 1.15470 klog(n) where |k| < 1

The Lyapunov exponent for the chaotic logistic map is In(2) (Pesin, 1977). We observe
that the Lyapunov exponent obtained for the chaotic map 8(y) is less than In(2) indicating that
B(y) is less chaatic than 1 (x).

The smallest prime gap is y =2 and for this u = exp(dy) = 1.11469. The Cauchy
principal value of the full integral is:

°°111|u—2|d _1l W o
J; u? M_2H(|u—2|)l B
and:

“In Ju — 2|

dly) = J |6’ (y)| dH(¥) = In(2) — j 0 du=1In(2), u = exp (ly)
0 1
from which we recover the Lyapunov exponent of the chaotic logistic map. It follows that:

t=0

i 2o (Y = Y)| ~kexp(8)log(n) = 2klog(n), |kl <1 (10)
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Theoretical Absolute Error
Next, we consider the magnitude of the difference between the 7th prime gap
(Yn) and the nth prime gap prediction (¥7):

2
1Y, — Y|l < [log(n) — In (Earcs‘m (v.5000))In (n)

1Y, — Y|l < |1—0.693147|In(n) = 0.306853 In (n)
where X, = 0.50000 = E(X) of the arcsine distribution (4).

Theorem 4. LetY, be the nth prime gap and let Y,,r be the estimated nth prime gap
based on the chaotic map 8(y) obtained by conjugation of the chaotic logistic map 1 (x). Then:

IY,— Y|l < |1—0.693147|In(n) = 0.306853 In (n)

Numerical Simulation

Let {Y# = {1,2,2,4,2,4,2,4,6,2,0,...} be the natural sequence of prime gaps
starting from the first gap of 1. Using the exponential approximation to the
distribution of prime gaps with:

)= Ae?
1
and Az m 4
then,
— oin2( X _ oy = 8
Xt sin (2 (1 e f]) n 10°.
We obtain the initial condition for the chaotic logistic map by substituting y, = 1 to

obtain:

xo = 0.00687

where log(100,000,000) = 18.4207. The sequence induced by the logistic map with this initial
condition is given by:

Xppq = 4x:(1—x; ), x,=0.00687

These will produce the sequence {y.'} = {1,y,’y,’, ...} which has an exponential distribution
with the same rate parameter A as the original distribution of y;.

The mean absolute error computed for this sequence is:
1227

T Y, — Y| = 14.127

1228 |Y; 2

t=0

MAE =
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We then proceeded to examine the behavior of the sequence in the
neighborhood of x%,=0.00687. Table 1 shows the MAE obtained for various
choices of initial values in the neighborhood of X,

Table 1. MAE for Various Initial Values Near X, =0.00687

MAE Initial Values X,
14.467 0.00287
14.417 0.00387
14.320 0.00487
14.369 0.00587
14.126 0.00687
14.342 0.00700
14.303 0.00800
14.615 0.002900
14.268 0.01000
14.414 0.01500
14.716 0.02000
14.072 0.02500
14.311 0.03000
14.458 0.03300
14.186 0.03400
14.345 0.03500
14.608 0.03362

The minimum value of the MAE occurs at x, = 0.025 with MAE = 14.072.
The graph of initial values versus MAE is shown below:

MAE

15

14
0 0.01 0.02

- A N .

0.03 0.04

—+—MAE

Figure 4. Mean Absolute Errors for Various Initial Values.
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The histogram for the optimal sequence of gaps generated from the initial
condition x = 0.025 is shown below to be exponential as desired:

250 —
200
150

00 — =

N [
o | Tl e

] 50 100 150
Optimal Sequence of Y

Frequency

Figure 5. Histogram for the Optimal Sequence
of Y Generated from X = 0.025.

Figure 4 shows that the objective function (MAE) for the minimization
problem has several local minima within (.003,.035). However, we also note that

the minimum among the local minima satisfies:

1227
: .1 .
Mmyrr(mm@ E IY; — Y| < 0.763923log(n) = ylog (n)

t=0

where ¥y = Ramanujan — Landau constant = 764223 or using (10),k = .661577.

The initial condition used previously was based on the fixed point x = 0 and
the initial prime gap of y = 1. We can also explore the other unstable fixed point
at x = .75 and use the following relation

v = —Eln 2arc31:(\/x_t}

a

Table 2 shows the results of the exploration around the neighborhood of
0.75. We find that the objective function has a unique minimum at around

X, =0.739 and:
min— Y1227y, — 1| < 0.7366712log(n) ~ 13¢5 log(n) or using (10),

1228 <=0

k =0.6370763
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where y is the Ramanujan-Landau constant earlier given. Table 2 shows the
results of the exploration.

Table 2. MAE for Initial Values Near an Unstable Fixed Point X,=0.75

Initial Values MAE
0.7300 15.941
0.7350 15.292
0.7370 14.476
0.7390 13.570
0.7400 13.729
0.7401 15.323
0.7420 15.532
0.7600 15.960

Figure 6 shows the mean absolute errors for various initial values used.

MAE
16.5
16
\ /
15.5
15 \ (
145 \ —+—MAE
14 \
135 \)

13 T T T T T T T |
0.725 073 0735 074 0745 0.75 0.755 0.76 0.765

Figure 6. MAE around the neighborhood of x = 0.75.

Figure 7 shows the histogram of the optimal sequence of gaps generated with
an initial condition of x = 0.739.
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Figure 7. Histogram of the Optimal Sequence of Gaps with
Initial Condition X = 0.739

Absolute Errors
Table 3 shows the estimated nth prime P, and the actual nth prime P, with

their absolute errors and relative absolute errors:

Table 3. Absolute Error for the Estimation of the nth Prime

N P{N-1) ‘::I:Il;al :Ess:'l)mated ::::;lated ABS(Error) | Relative Abs Error
5000 48593 48611 5.90361 48599 12 0.000246858
10000 104723 104729 6.38406 104729 0 0.000000000
15000 163819 163841 6.6651 163826 15 9.15522E-05
30000 350351 350377 7.14555 350358 19 5.42273E-05
100000 | 1299689 | 1299709 | 7.98007 1299697 12 9.23284E-06
200000 | 2750131 | 2750159 | 8.46052 2750139 20 7.27231E-06
300000 | 4256227 | 4256233 | 8.74156 47256236 3 7.04849E-07
400000 | 5800057 | 5800079 | 8.940597 5800066 13 2.24135E-06
500000 | 7368743 | 7368787 | 9.09563 7368752 35 4.74976E-06
600000 | 8960447 | 8960453 | 9.22201 8960456 3 3.34805E-07
664578 | 9999971 | 9999973 | 9.29286 9999980 7 7.00002E-07

Table 4 compares the estimated nth prime using the dynamical map @(y) and the Prime
Number Theorem prediction of the nth prime:
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Table 4. PNT versus Chaotic Map Prediction of the nth Prime

N Actual Nth Prime Predicted Py Chaotic Map Estimate of
Number Using PNT Py

5000 48611 42586 48599
10000 104729 92103 104729
15000 163841 144237 163826
30000 350377 309269 350358
100000 1299709 1151293 1299697
200000 2750159 2441215 2750139
300000 4256233 3783461 4256236
400000 5800079 5159688 5800066
500000 7368787 6561182 7368752
600000 8960453 7982811 8960456
664578 9990973 8909936 9999080

Tabular values show that the predictions made using the chaotic dynamics
approach are much closer to the actual primes than the predictions using the
Prime Number Theorem.

CONCLUSION

With the concept of deterministic randomness, we modelled the prime gaps as
a chaotic dynamical system. Given the invariant density or ergodic distribution,
we can find some dynamical map f(.) such that: x = f(x) for which the

collection {x } of prime gaps follow the stationary distribution referred to as the
Inverse Frobenius-Perron map. This map is given by

6(y) = 5 In| —1 + Zexp(—2y)|.
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